
www.devoxx.com

1

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com

Introducing Bastion,
a DDD Framework

Danny Lagrouw
Profict b.v.
www.profict.nl

2

Hi, my name is Danny Lagrouw, I work for a Dutch Java company
called Profict. I’m here today to talk about Domain-Driven Design,
or DDD.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.profict.nl
http://www.profict.nl

www.devoxx.com

Domain-Driven Design

3

First of all, how many of you are familiar with DDD? Maybe you’ve
used it in a project, or you’ve just read about it?
Okay, then you will probably also know about this book...

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com4

Evans

4

Domain-Driven Design, Tackling Complexity in the Heart of Software,
written by Eric Evans. It is the standard book to read if you want to know
about DDD; so for those of you unfamiliar with DDD, go and buy this book
(after this session of course).
Obviously 15 minutes is not enough to go into even the basics of DDD if
you don’t know anything about it yet. What I can tell you is what I think are
the three main principles for DDD that Evans describes.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com

One language

5

Evans

5

First of all, Evans says, Domain-Driven Design means that you need
one ubiquitous language, a language to be spoken by all people on
the project. That way, you’ll have less chance of confusion, less will
be lost in translation, and the application will better match the
expectations your client has of it.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com

One domain model

6

Evans

6

Throughout the project, everyone should use the same domain model. The
same model you discuss with your users, the domain experts, should be
the one you implement. And from that follows that the implemented domain
should contain nothing but business classes--classes your users will
recognize. There shouldn’t be anything in there but domain logic--nothing
technical, nothing that isn’t part of the domain model.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com

One layer for the domain

(and nothing but the domain)

7

Evans

7

Which is the third principle: the domain layer in your application
should contain nothing but the domain logic. Everything else should
be in separate layers. Most notably user interface and infrastructural
code, like database access.
So for me, these are the three main principles from Evans’ book.
But there’s more to DDD then what Evans tells us.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com8

Another kind of DDD

Generic, reusable services
Ruud van Vliet

Rob Vens

8

Back in 2000, my colleague Ruud van Vliet wrote an article about his
idea of generic, reusable services, a way to isolate business logic
from the rest of the application. Dutch DDD guru Rob Vens uses that
same concept for his so-called satellite model of the domain.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com9

Rob Vens’ Satellite Model

Domain
Object

Persistency

GUI
Other

Service

SecurityLogging

Security

GUI

Persistency

Other
Service

GUI

Logging

Component Library

9

Vens, like Evans, says that the domain should be the center of the
application. His view of a domain is that it should always be live,
always running, ever expanding, almost unlimited in size. Placed
around the domain are adapter classes that listen to events within
the domain and respond by calling external services. Likewise,
events from outside the domain can be caught by adapters and fed
into the domain. Because domain and services are decoupled, the
services can be made generic and are therefore reusable across
domains. That way, you will end up with a component library of
reusable services.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com

That’s the theory, now
let’s build something

10

The problem with both Evans and Vens is, that neither offers any
real, pragmatic guidelines for bringing their theory into practice.
Evans focusses on his method of designing the domain model.
Vens’ ideas about a live domain, ever-growing, might make sense in
his preferred environment, Smalltalk.
But for the kind of application that I typically work on--Java based
applications whose main interface is a web app--there’s no ready-
to-use solution, no sample applications, no framework to get me up
and running. And that is exactly the reason why I started working
on...

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com

11

Bastion, a light-weight framework for developing DDD applications
in the spirit of Evans and Vens. The name Bastion symbolizes the
wall that separates the domain from the rest of the system.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com
Domain 2

Domain

12

The Bastion Model

Usecase
Service

Usecase
Service

Usecase
Service

Configuration
Service

Queue
Service

Logging
Service

Authentication
Service

Persistence
Service

Domain
Object

Adapter

Adapter

Adapter

12

So what does Bastion’s model look like? Like Vens’ satellite model, Bastion
separates domain logic, business logic, from everything else, using an
adapter layer.
All domain logic is implemented in the domain according to the domain
model. The domain’s interface to the outside world consists of usecase
services, that would mirror the actions in usecase scenario’s. The usecase
services delegate to domain objects, where the real domain logic is.
Outside the domain are these adapters, that listen to messages sent by
the domain. For instance, the domain could ‘broadcast’ a message that a
new domain object has been created. An appropriate adapter receives this
message and calls a method on a persistence service. This service knows
how to store the object in the database.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com
Domain 2

Domain

13

Bastion - Adapters

Usecase
Service

Usecase
Service

Usecase
Service

Configuration
Service

Queue
Service

Authentication
Service

Persistence
Service

Domain
Object

Adapter

Adapter

Adapter

Logging
Service

13

The adapters do nothing but translate domain messages into service calls.
The adapters are the configuration of your domain. Through them you
control how specific domain messages will be handled. You could, for
instance, link the same message type to different adapters and services.
When a domain object has been created, you could, besides store it in the
database, trigger a logging service to log the event.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com
Domain 2

Domain

14

Bastion - Services

Usecase
Service

Usecase
Service

Usecase
Service

Configuration
Service

Queue
Service

Authentication
Service

Persistence
Service

Domain
Object

Adapter

Adapter

Adapter

Logging
Service

14

The services are completely independent of the domain and the adapters.
The services know nothing about the domain, just like the domain knows
nothing about the services. That’s what the adapter layer is for. As a result,
you can make the services generic. And that makes them reusable with
other domains and other applications. When a new version arrives for the
technology your service uses, you can update and test that service--not
your domain. If you want to use a different technological solution for one
of the services, you re-link the adapter to another service. Your domain
classes will never know the difference.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com15

Bastion Code Sample
Domain Object
	 public Client(String name) {
	 	 this.name = name;
 	 Domain.notify(new RegisterMessage(this));
	 }

Domain Configuration
	 JmsService jmsService = new JmsService(connectionFactory, queue);
	 QueueAdapter adapter = new QueueAdapter(jmsService);
	 domain.registerAdapter(RegisterMessage.class, adapter);

15

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com16

Bastion Code Sample
Adapter
 public void handle(RegisterMessage message) {
 service.send(“Created: ” + message.getDomainObject().toString());
 }

Service
 public void send(String messageText) throws Exception {
 Connection connection = null;
 connection = connectionFactory.createConnection();
 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 MessageProducer producer = session.createProducer(destination);
 TextMessage message = session.createTextMessage(messageText);
 producer.send(message);
 }

16

So, that’s how Bastion works. Your domain objects will only execute domain
logic. If something happens in the domain that the outside world should
know about (like object creation) the domain will trigger the corresponding
adapter. If a domain object needs anything from the outside world
(webservice, data from a database), it uses the same mechanism to trigger
an adapter to get the information.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com

Store data and query data from a database

Call a web service

Send message to JMS queue

Retrieve configuration parameters

Query an LDAP server

Get generated test data

Communicate with other applications

17

Bastion - Service Examples

17

Here’s some more examples of services that Bastion provides or could
provide.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com

Version 0.7

(Better) test coverage

Getting started manual

More services

Your participation?

18

Bastion - Roadmap

18

Bastion has recently seen its first public release, version 0.6. At the
moment, the main goals for the next release are more test coverage, a
getting started manual, and adding more services. At the same time, we’re
doing a pilot project at Profict using Bastion, and obviously my ultimate goal
is to get it used in production systems. So if you’re interested in looking at
Bastion, using it in your own application, or even helping out with further
development, I’d very much like to hear.

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com

Further information

http://bastionframework.org

danny@bastionframework.org

19

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://bastionframework.org
http://bastionframework.org
mailto:danny@bastionframework.org
mailto:danny@bastionframework.org

www.devoxx.com

Q&A

20

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com

www.devoxx.com

Thanks for your attention!

http://bastionframework.org

danny@bastionframework.org

21

http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://www.devoxx.com
http://bastionframework.org
http://bastionframework.org
mailto:danny@bastionframework.org
mailto:danny@bastionframework.org

